生成的参数组合数量:18
2025-05-22 19:08:33 | INFO | metric_online:run_with_hydra:842 - {'envs': {'env': {'mode': 'prod', 'enable_monitor': False, 'n_jobs': 1}, 'incremental': {'enabled': True, 'lookback_days': 20, 'start_date': None, 'end_date': 'today'}, 'run': {'n_jobs': 1, 'retry_times': 3, 'retry_delay': 2}, 'shard': {'num_shards': 1, 'shard_id': 0}}}
2025-05-22 19:08:33 | INFO | metric_online:run_with_hydra:889 - Total tasks generated: 1
2025-05-22 19:08:33 | INFO | metric_online:run_with_hydra:902 - Starting parallel execution with n_jobs=1...
2025-05-22 19:08:40 | INFO | metric_online:main2:781 - save train test done /root/data/Research1//feature/finalcomd//B8Wstats250412/B8Wstats250412_0--combo52
2025-05-22 19:10:47 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:47 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:48 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:49 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:50 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:50 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:51 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:51 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:54 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:54 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:55 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:55 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:58 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:58 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:59 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:10:59 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:00 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:00 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:00 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:01 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:02 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:02 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:02 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:03 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:04 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:04 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:04 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:05 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:05 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:06 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:07 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:11 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:11 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:12 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:13 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:14 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:11:14 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
{'obj': 'Sharpe', 'rm': 'MDD', 'model': 'Classic', 'method_mu': 'hist', 'method_cov': 'hist', 'linkage': 'single', 'leaf_order': True, 'codependence': 'pearson', 'lookback_period': 256, 'every': 10, 'nea': 5, 'split_every': False, 'normalize_every': False}
1%| | 1/105 [00:08<14:33, 8.40s/it, 2020-01-17 → 2021-02-04]
2%|▏ | 2/105 [00:14<11:54, 6.94s/it, 2020-02-08 → 2021-02-25]
3%|▎ | 3/105 [00:20<11:00, 6.48s/it, 2020-02-22 → 2021-03-11]
4%|▍ | 4/105 [00:26<10:29, 6.23s/it, 2020-03-07 → 2021-03-25]
5%|▍ | 5/105 [00:31<10:07, 6.07s/it, 2020-03-21 → 2021-04-09]
6%|▌ | 6/105 [00:37<09:53, 6.00s/it, 2020-04-04 → 2021-04-23]
7%|▋ | 7/105 [00:43<09:45, 5.97s/it, 2020-04-21 → 2021-05-12]
8%|▊ | 8/105 [00:49<09:40, 5.98s/it, 2020-05-08 → 2021-05-26]
9%|▊ | 9/105 [00:55<09:34, 5.99s/it, 2020-05-22 → 2021-06-09]
10%|▉ | 10/105 [01:01<09:29, 6.00s/it, 2020-06-05 → 2021-06-24]
10%|█ | 11/105 [01:07<09:24, 6.00s/it, 2020-06-19 → 2021-07-08]
11%|█▏ | 12/105 [01:13<09:19, 6.01s/it, 2020-07-07 → 2021-07-22]
12%|█▏ | 13/105 [01:19<09:12, 6.00s/it, 2020-07-21 → 2021-08-05]
13%|█▎ | 14/105 [01:25<09:07, 6.01s/it, 2020-08-04 → 2021-08-19]
14%|█▍ | 15/105 [01:31<09:01, 6.01s/it, 2020-08-18 → 2021-09-02]
15%|█▌ | 16/105 [01:37<08:56, 6.03s/it, 2020-09-01 → 2021-09-16]
16%|█▌ | 17/105 [01:43<08:52, 6.06s/it, 2020-09-15 → 2021-10-09]
17%|█▋ | 18/105 [01:49<08:46, 6.05s/it, 2020-09-29 → 2021-10-23]
18%|█▊ | 19/105 [01:56<08:39, 6.04s/it, 2020-10-21 → 2021-11-06]
19%|█▉ | 20/105 [02:02<08:33, 6.04s/it, 2020-11-04 → 2021-11-20]
20%|██ | 21/105 [02:08<08:27, 6.04s/it, 2020-11-18 → 2021-12-04]
21%|██ | 22/105 [02:14<08:22, 6.05s/it, 2020-12-02 → 2021-12-18]
22%|██▏ | 23/105 [02:20<08:16, 6.06s/it, 2020-12-16 → 2022-01-01]
23%|██▎ | 24/105 [02:26<08:10, 6.05s/it, 2020-12-30 → 2022-01-18]
24%|██▍ | 25/105 [02:32<08:05, 6.07s/it, 2021-01-14 → 2022-02-08]
25%|██▍ | 26/105 [02:38<07:59, 6.07s/it, 2021-01-28 → 2022-02-22]
26%|██▌ | 27/105 [02:44<07:54, 6.08s/it, 2021-02-11 → 2022-03-08]
27%|██▋ | 28/105 [02:50<07:48, 6.09s/it, 2021-03-04 → 2022-03-22]
28%|██▊ | 29/105 [02:56<07:43, 6.10s/it, 2021-03-18 → 2022-04-07]
29%|██▊ | 30/105 [03:02<07:34, 6.07s/it, 2021-04-01 → 2022-04-21]
30%|██▉ | 31/105 [03:08<07:31, 6.10s/it, 2021-04-16 → 2022-05-10]
30%|███ | 32/105 [03:15<07:27, 6.14s/it, 2021-04-30 → 2022-05-24]
31%|███▏ | 33/105 [03:21<07:22, 6.15s/it, 2021-05-19 → 2022-06-08]
32%|███▏ | 34/105 [03:27<07:15, 6.13s/it, 2021-06-02 → 2022-06-22]
33%|███▎ | 35/105 [03:33<07:08, 6.12s/it, 2021-06-17 → 2022-07-06]
34%|███▍ | 36/105 [03:39<07:02, 6.12s/it, 2021-07-01 → 2022-07-20]
35%|███▌ | 37/105 [03:45<06:55, 6.11s/it, 2021-07-15 → 2022-08-03]
36%|███▌ | 38/105 [03:51<06:47, 6.09s/it, 2021-07-29 → 2022-08-17]
37%|███▋ | 39/105 [03:57<06:39, 6.06s/it, 2021-08-12 → 2022-08-31]
38%|███▊ | 40/105 [04:03<06:32, 6.04s/it, 2021-08-26 → 2022-09-15]
39%|███▉ | 41/105 [04:09<06:26, 6.03s/it, 2021-09-09 → 2022-09-29]
40%|████ | 42/105 [04:15<06:20, 6.05s/it, 2021-09-25 → 2022-10-20]
41%|████ | 43/105 [04:21<06:15, 6.05s/it, 2021-10-16 → 2022-11-03]
42%|████▏ | 44/105 [04:27<06:08, 6.04s/it, 2021-10-30 → 2022-11-17]
43%|████▎ | 45/105 [04:34<06:04, 6.07s/it, 2021-11-13 → 2022-12-01]
44%|████▍ | 46/105 [04:40<06:04, 6.18s/it, 2021-11-27 → 2022-12-15]
45%|████▍ | 47/105 [04:46<05:57, 6.17s/it, 2021-12-11 → 2022-12-29]
46%|████▌ | 48/105 [04:52<05:51, 6.16s/it, 2021-12-25 → 2023-01-13]
47%|████▋ | 49/105 [04:58<05:41, 6.09s/it, 2022-01-11 → 2023-02-03]
48%|████▊ | 50/105 [05:04<05:33, 6.06s/it, 2022-01-25 → 2023-02-17]
49%|████▊ | 51/105 [05:10<05:27, 6.06s/it, 2022-02-15 → 2023-03-03]
50%|████▉ | 52/105 [05:16<05:22, 6.09s/it, 2022-03-01 → 2023-03-17]
50%|█████ | 53/105 [05:23<05:17, 6.11s/it, 2022-03-15 → 2023-03-31]
51%|█████▏ | 54/105 [05:29<05:13, 6.14s/it, 2022-03-29 → 2023-04-15]
52%|█████▏ | 55/105 [05:35<05:06, 6.13s/it, 2022-04-14 → 2023-04-29]
53%|█████▎ | 56/105 [05:41<05:01, 6.15s/it, 2022-04-28 → 2023-05-18]
54%|█████▍ | 57/105 [05:47<04:54, 6.14s/it, 2022-05-17 → 2023-06-01]
55%|█████▌ | 58/105 [05:53<04:48, 6.13s/it, 2022-05-31 → 2023-06-15]
56%|█████▌ | 59/105 [06:00<04:42, 6.15s/it, 2022-06-15 → 2023-07-01]
57%|█████▋ | 60/105 [06:06<04:37, 6.16s/it, 2022-06-29 → 2023-07-15]
58%|█████▊ | 61/105 [06:12<04:32, 6.19s/it, 2022-07-13 → 2023-07-29]
59%|█████▉ | 62/105 [06:18<04:26, 6.20s/it, 2022-07-27 → 2023-08-12]
60%|██████ | 63/105 [06:24<04:20, 6.21s/it, 2022-08-10 → 2023-08-26]
61%|██████ | 64/105 [06:31<04:14, 6.21s/it, 2022-08-24 → 2023-09-09]
62%|██████▏ | 65/105 [06:37<04:08, 6.21s/it, 2022-09-07 → 2023-09-23]
63%|██████▎ | 66/105 [06:43<04:02, 6.22s/it, 2022-09-22 → 2023-10-17]
64%|██████▍ | 67/105 [06:49<03:56, 6.22s/it, 2022-10-13 → 2023-10-31]
65%|██████▍ | 68/105 [06:56<03:49, 6.21s/it, 2022-10-27 → 2023-11-14]
66%|██████▌ | 69/105 [07:02<03:43, 6.21s/it, 2022-11-10 → 2023-11-28]
67%|██████▋ | 70/105 [07:08<03:37, 6.22s/it, 2022-11-24 → 2023-12-12]
68%|██████▊ | 71/105 [07:14<03:30, 6.20s/it, 2022-12-08 → 2023-12-26]
69%|██████▊ | 72/105 [07:20<03:23, 6.18s/it, 2022-12-22 → 2024-01-10]
70%|██████▉ | 73/105 [07:26<03:17, 6.16s/it, 2023-01-06 → 2024-01-24]
70%|███████ | 74/105 [07:32<03:10, 6.14s/it, 2023-01-20 → 2024-02-07]
71%|███████▏ | 75/105 [07:39<03:03, 6.13s/it, 2023-02-10 → 2024-02-29]
72%|███████▏ | 76/105 [07:45<02:57, 6.12s/it, 2023-02-24 → 2024-03-14]
73%|███████▎ | 77/105 [07:51<02:51, 6.13s/it, 2023-03-10 → 2024-03-28]
74%|███████▍ | 78/105 [07:57<02:45, 6.12s/it, 2023-03-24 → 2024-04-13]
75%|███████▌ | 79/105 [08:03<02:39, 6.12s/it, 2023-04-08 → 2024-04-27]
76%|███████▌ | 80/105 [08:09<02:33, 6.12s/it, 2023-04-22 → 2024-05-16]
77%|███████▋ | 81/105 [08:15<02:27, 6.15s/it, 2023-05-11 → 2024-05-30]
78%|███████▊ | 82/105 [08:22<02:21, 6.17s/it, 2023-05-25 → 2024-06-14]
79%|███████▉ | 83/105 [08:28<02:15, 6.17s/it, 2023-06-08 → 2024-06-28]
80%|████████ | 84/105 [08:34<02:09, 6.18s/it, 2023-06-22 → 2024-07-12]
81%|████████ | 85/105 [08:40<02:03, 6.16s/it, 2023-07-08 → 2024-07-26]
82%|████████▏ | 86/105 [08:46<01:56, 6.15s/it, 2023-07-22 → 2024-08-09]
83%|████████▎ | 87/105 [08:52<01:50, 6.14s/it, 2023-08-05 → 2024-08-23]
84%|████████▍ | 88/105 [08:58<01:44, 6.13s/it, 2023-08-19 → 2024-09-06]
85%|████████▍ | 89/105 [09:04<01:37, 6.12s/it, 2023-09-02 → 2024-09-24]
86%|████████▌ | 90/105 [09:11<01:31, 6.13s/it, 2023-09-16 → 2024-10-15]
87%|████████▋ | 91/105 [09:17<01:26, 6.14s/it, 2023-10-10 → 2024-10-29]
88%|████████▊ | 92/105 [09:23<01:20, 6.17s/it, 2023-10-24 → 2024-11-12]
89%|████████▊ | 93/105 [09:29<01:14, 6.18s/it, 2023-11-07 → 2024-11-26]
90%|████████▉ | 94/105 [09:35<01:07, 6.18s/it, 2023-11-21 → 2024-12-10]
90%|█████████ | 95/105 [09:42<01:01, 6.15s/it, 2023-12-05 → 2024-12-24]
91%|█████████▏| 96/105 [09:48<00:55, 6.17s/it, 2023-12-19 → 2025-01-08]
92%|█████████▏| 97/105 [09:54<00:49, 6.15s/it, 2024-01-03 → 2025-01-22]
93%|█████████▎| 98/105 [10:00<00:43, 6.15s/it, 2024-01-17 → 2025-02-13]
94%|█████████▍| 99/105 [10:06<00:36, 6.16s/it, 2024-01-31 → 2025-02-27]
95%|█████████▌| 100/105 [10:12<00:30, 6.16s/it, 2024-02-22 → 2025-03-13]
96%|█████████▌| 101/105 [10:19<00:24, 6.17s/it, 2024-03-07 → 2025-03-27]
97%|█████████▋| 102/105 [10:25<00:18, 6.18s/it, 2024-03-21 → 2025-04-11]
98%|█████████▊| 103/105 [10:31<00:12, 6.18s/it, 2024-04-04 → 2025-04-26]
99%|█████████▉| 104/105 [10:37<00:06, 6.16s/it, 2024-04-20 → 2025-05-15]
100%|██████████| 105/105 [10:43<00:00, 6.14s/it, 2024-04-20 → 2025-05-15]
100%|██████████| 105/105 [10:43<00:00, 6.13s/it, 2024-04-20 → 2025-05-15]
2025-05-22 19:22:00 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:463 - [v7] 优化前的夏普率: 1.02791
2025-05-22 19:22:00 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:464 - [v7] 优化后的夏普率: 0.65947
2025-05-22 19:22:00 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:01 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:02 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:03 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:04 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:05 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:07 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:07 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:09 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:09 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:10 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:10 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:10 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:11 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:11 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:14 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:15 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:15 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:22:16 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
{'obj': 'Sharpe', 'rm': 'MDD', 'model': 'Classic', 'method_mu': 'hist', 'method_cov': 'hist', 'linkage': 'single', 'leaf_order': True, 'codependence': 'pearson', 'lookback_period': 256, 'every': 10, 'nea': 5, 'split_every': False, 'normalize_every': False}
1%| | 1/105 [00:05<10:17, 5.93s/it, 2020-01-18 → 2021-02-05]
2%|▏ | 2/105 [00:11<10:10, 5.93s/it, 2020-02-11 → 2021-02-26]
3%|▎ | 3/105 [00:17<10:02, 5.91s/it, 2020-02-25 → 2021-03-12]
4%|▍ | 4/105 [00:23<09:54, 5.88s/it, 2020-03-10 → 2021-03-26]
5%|▍ | 5/105 [00:29<09:51, 5.92s/it, 2020-03-24 → 2021-04-10]
6%|▌ | 6/105 [00:35<09:47, 5.93s/it, 2020-04-08 → 2021-04-24]
7%|▋ | 7/105 [00:41<09:42, 5.95s/it, 2020-04-22 → 2021-05-13]
8%|▊ | 8/105 [00:47<09:40, 5.98s/it, 2020-05-09 → 2021-05-27]
9%|▊ | 9/105 [00:53<09:37, 6.02s/it, 2020-05-23 → 2021-06-10]
10%|▉ | 10/105 [00:59<09:33, 6.04s/it, 2020-06-06 → 2021-06-25]
10%|█ | 11/105 [01:05<09:28, 6.04s/it, 2020-06-20 → 2021-07-09]
11%|█▏ | 12/105 [01:11<09:22, 6.05s/it, 2020-07-08 → 2021-07-23]
12%|█▏ | 13/105 [01:17<09:16, 6.05s/it, 2020-07-22 → 2021-08-06]
13%|█▎ | 14/105 [01:23<09:09, 6.04s/it, 2020-08-05 → 2021-08-20]
14%|█▍ | 15/105 [01:29<09:02, 6.03s/it, 2020-08-19 → 2021-09-03]
15%|█▌ | 16/105 [01:36<08:57, 6.04s/it, 2020-09-02 → 2021-09-17]
16%|█▌ | 17/105 [01:42<08:52, 6.06s/it, 2020-09-16 → 2021-10-12]
17%|█▋ | 18/105 [01:48<08:48, 6.07s/it, 2020-09-30 → 2021-10-26]
18%|█▊ | 19/105 [01:54<08:43, 6.09s/it, 2020-10-22 → 2021-11-09]
19%|█▉ | 20/105 [02:00<08:39, 6.11s/it, 2020-11-05 → 2021-11-23]
20%|██ | 21/105 [02:06<08:31, 6.08s/it, 2020-11-19 → 2021-12-07]
21%|██ | 22/105 [02:12<08:23, 6.06s/it, 2020-12-03 → 2021-12-21]
22%|██▏ | 23/105 [02:18<08:16, 6.05s/it, 2020-12-17 → 2022-01-05]
23%|██▎ | 24/105 [02:24<08:11, 6.06s/it, 2020-12-31 → 2022-01-19]
24%|██▍ | 25/105 [02:30<08:07, 6.09s/it, 2021-01-15 → 2022-02-09]
25%|██▍ | 26/105 [02:36<08:00, 6.08s/it, 2021-01-29 → 2022-02-23]
26%|██▌ | 27/105 [02:42<07:54, 6.09s/it, 2021-02-19 → 2022-03-09]
27%|██▋ | 28/105 [02:49<07:49, 6.10s/it, 2021-03-05 → 2022-03-23]
28%|██▊ | 29/105 [02:55<07:43, 6.10s/it, 2021-03-19 → 2022-04-08]
29%|██▊ | 30/105 [03:01<07:38, 6.11s/it, 2021-04-02 → 2022-04-22]
30%|██▉ | 31/105 [03:07<07:32, 6.11s/it, 2021-04-17 → 2022-05-11]
30%|███ | 32/105 [03:13<07:25, 6.11s/it, 2021-05-01 → 2022-05-25]
31%|███▏ | 33/105 [03:19<07:20, 6.12s/it, 2021-05-20 → 2022-06-09]
32%|███▏ | 34/105 [03:25<07:14, 6.12s/it, 2021-06-03 → 2022-06-23]
33%|███▎ | 35/105 [03:31<07:07, 6.11s/it, 2021-06-18 → 2022-07-07]
34%|███▍ | 36/105 [03:38<07:01, 6.12s/it, 2021-07-02 → 2022-07-21]
35%|███▌ | 37/105 [03:44<06:56, 6.13s/it, 2021-07-16 → 2022-08-04]
36%|███▌ | 38/105 [03:50<06:50, 6.13s/it, 2021-07-30 → 2022-08-18]
37%|███▋ | 39/105 [03:56<06:44, 6.13s/it, 2021-08-13 → 2022-09-01]
38%|███▊ | 40/105 [04:02<06:39, 6.14s/it, 2021-08-27 → 2022-09-16]
39%|███▉ | 41/105 [04:08<06:32, 6.13s/it, 2021-09-10 → 2022-09-30]
40%|████ | 42/105 [04:14<06:25, 6.12s/it, 2021-09-28 → 2022-10-21]
41%|████ | 43/105 [04:21<06:20, 6.14s/it, 2021-10-19 → 2022-11-04]
42%|████▏ | 44/105 [04:27<06:13, 6.13s/it, 2021-11-02 → 2022-11-18]
43%|████▎ | 45/105 [04:33<06:07, 6.12s/it, 2021-11-16 → 2022-12-02]
44%|████▍ | 46/105 [04:39<05:59, 6.10s/it, 2021-11-30 → 2022-12-16]
45%|████▍ | 47/105 [04:45<05:54, 6.11s/it, 2021-12-14 → 2022-12-30]
46%|████▌ | 48/105 [04:51<05:48, 6.11s/it, 2021-12-28 → 2023-01-14]
47%|████▋ | 49/105 [04:57<05:38, 6.05s/it, 2022-01-12 → 2023-02-04]
48%|████▊ | 50/105 [05:03<05:29, 5.99s/it, 2022-01-26 → 2023-02-18]
49%|████▊ | 51/105 [05:09<05:22, 5.98s/it, 2022-02-16 → 2023-03-04]
50%|████▉ | 52/105 [05:15<05:18, 6.01s/it, 2022-03-02 → 2023-03-18]
50%|█████ | 53/105 [05:21<05:14, 6.05s/it, 2022-03-16 → 2023-04-01]
51%|█████▏ | 54/105 [05:27<05:10, 6.10s/it, 2022-03-30 → 2023-04-18]
52%|█████▏ | 55/105 [05:33<05:05, 6.11s/it, 2022-04-15 → 2023-05-05]
53%|█████▎ | 56/105 [05:39<04:59, 6.12s/it, 2022-04-29 → 2023-05-19]
54%|█████▍ | 57/105 [05:46<04:54, 6.13s/it, 2022-05-18 → 2023-06-02]
55%|█████▌ | 58/105 [05:52<04:49, 6.15s/it, 2022-06-01 → 2023-06-16]
56%|█████▌ | 59/105 [05:58<04:43, 6.17s/it, 2022-06-16 → 2023-07-04]
57%|█████▋ | 60/105 [06:04<04:37, 6.17s/it, 2022-06-30 → 2023-07-18]
58%|█████▊ | 61/105 [06:10<04:31, 6.18s/it, 2022-07-14 → 2023-08-01]
59%|█████▉ | 62/105 [06:17<04:25, 6.18s/it, 2022-07-28 → 2023-08-15]
60%|██████ | 63/105 [06:23<04:19, 6.18s/it, 2022-08-11 → 2023-08-29]
61%|██████ | 64/105 [06:29<04:13, 6.18s/it, 2022-08-25 → 2023-09-12]
62%|██████▏ | 65/105 [06:35<04:06, 6.17s/it, 2022-09-08 → 2023-09-26]
63%|██████▎ | 66/105 [06:41<04:00, 6.16s/it, 2022-09-23 → 2023-10-18]
64%|██████▍ | 67/105 [06:47<03:53, 6.13s/it, 2022-10-14 → 2023-11-01]
65%|██████▍ | 68/105 [06:53<03:46, 6.13s/it, 2022-10-28 → 2023-11-15]
66%|██████▌ | 69/105 [06:59<03:39, 6.11s/it, 2022-11-11 → 2023-11-29]
67%|██████▋ | 70/105 [07:06<03:33, 6.11s/it, 2022-11-25 → 2023-12-13]
68%|██████▊ | 71/105 [07:12<03:27, 6.10s/it, 2022-12-09 → 2023-12-27]
69%|██████▊ | 72/105 [07:18<03:20, 6.09s/it, 2022-12-23 → 2024-01-11]
70%|██████▉ | 73/105 [07:24<03:14, 6.09s/it, 2023-01-07 → 2024-01-25]
70%|███████ | 74/105 [07:30<03:08, 6.09s/it, 2023-01-21 → 2024-02-08]
71%|███████▏ | 75/105 [07:36<03:02, 6.09s/it, 2023-02-11 → 2024-03-01]
72%|███████▏ | 76/105 [07:42<02:56, 6.09s/it, 2023-02-25 → 2024-03-15]
73%|███████▎ | 77/105 [07:48<02:51, 6.13s/it, 2023-03-11 → 2024-03-29]
74%|███████▍ | 78/105 [07:54<02:45, 6.15s/it, 2023-03-25 → 2024-04-16]
75%|███████▌ | 79/105 [08:01<02:40, 6.16s/it, 2023-04-11 → 2024-04-30]
76%|███████▌ | 80/105 [08:07<02:34, 6.17s/it, 2023-04-25 → 2024-05-17]
77%|███████▋ | 81/105 [08:13<02:27, 6.14s/it, 2023-05-12 → 2024-05-31]
78%|███████▊ | 82/105 [08:19<02:20, 6.12s/it, 2023-05-26 → 2024-06-15]
79%|███████▉ | 83/105 [08:25<02:14, 6.11s/it, 2023-06-09 → 2024-06-29]
80%|████████ | 84/105 [08:31<02:09, 6.15s/it, 2023-06-27 → 2024-07-13]
81%|████████ | 85/105 [08:38<02:03, 6.20s/it, 2023-07-11 → 2024-07-27]
82%|████████▏ | 86/105 [08:44<01:58, 6.23s/it, 2023-07-25 → 2024-08-10]
83%|████████▎ | 87/105 [08:50<01:52, 6.23s/it, 2023-08-08 → 2024-08-24]
84%|████████▍ | 88/105 [08:56<01:45, 6.22s/it, 2023-08-22 → 2024-09-07]
85%|████████▍ | 89/105 [09:02<01:39, 6.19s/it, 2023-09-05 → 2024-09-25]
86%|████████▌ | 90/105 [09:09<01:32, 6.18s/it, 2023-09-19 → 2024-10-16]
87%|████████▋ | 91/105 [09:15<01:26, 6.19s/it, 2023-10-11 → 2024-10-30]
88%|████████▊ | 92/105 [09:21<01:20, 6.19s/it, 2023-10-25 → 2024-11-13]
89%|████████▊ | 93/105 [09:27<01:14, 6.19s/it, 2023-11-08 → 2024-11-27]
90%|████████▉ | 94/105 [09:33<01:08, 6.20s/it, 2023-11-22 → 2024-12-11]
90%|█████████ | 95/105 [09:40<01:01, 6.20s/it, 2023-12-06 → 2024-12-25]
91%|█████████▏| 96/105 [09:46<00:55, 6.20s/it, 2023-12-20 → 2025-01-09]
92%|█████████▏| 97/105 [09:52<00:49, 6.17s/it, 2024-01-04 → 2025-01-23]
93%|█████████▎| 98/105 [09:58<00:43, 6.18s/it, 2024-01-18 → 2025-02-14]
94%|█████████▍| 99/105 [10:04<00:37, 6.18s/it, 2024-02-01 → 2025-02-28]
95%|█████████▌| 100/105 [10:11<00:30, 6.18s/it, 2024-02-23 → 2025-03-14]
96%|█████████▌| 101/105 [10:17<00:24, 6.18s/it, 2024-03-08 → 2025-03-28]
97%|█████████▋| 102/105 [10:23<00:18, 6.18s/it, 2024-03-22 → 2025-04-15]
98%|█████████▊| 103/105 [10:29<00:12, 6.17s/it, 2024-04-09 → 2025-04-29]
99%|█████████▉| 104/105 [10:35<00:06, 6.18s/it, 2024-04-23 → 2025-05-16]
100%|██████████| 105/105 [10:41<00:00, 6.19s/it, 2024-04-23 → 2025-05-16]
100%|██████████| 105/105 [10:41<00:00, 6.11s/it, 2024-04-23 → 2025-05-16]
2025-05-22 19:32:58 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:463 - [v8] 优化前的夏普率: 0.73291
2025-05-22 19:32:58 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:464 - [v8] 优化后的夏普率: 0.93236
2025-05-22 19:32:59 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:00 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:00 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:01 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:05 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:07 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:07 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:09 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:09 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:10 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:10 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:11 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:11 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:14 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-22 19:33:15 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
[2025-05-22 19:33:16,377][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:16,379][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:16,386][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:16,387][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:16,394][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:16,395][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:18,322][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:18,323][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:18,331][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:18,332][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:18,339][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:18,340][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:20,112][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:20,113][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:20,120][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:20,121][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:20,128][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-22 19:33:20,129][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
2025-05-22 19:33:23 | INFO | metric_online:run_with_hydra:919 - {'action': 'parallel_done', 'success_count': 1, 'fail_count': 0}
2025-05-22 19:33:23 | INFO | metric_online:run_with_hydra:924 - {'action': 'success', 'description': 'metric_online 完成'}