LogViewer
生成的参数组合数量:18
2025-05-30 19:08:34 | INFO | metric_online:run_with_hydra:842 - {'envs': {'env': {'mode': 'prod', 'enable_monitor': False, 'n_jobs': 1}, 'incremental': {'enabled': True, 'lookback_days': 20, 'start_date': None, 'end_date': 'today'}, 'run': {'n_jobs': 1, 'retry_times': 3, 'retry_delay': 2}, 'shard': {'num_shards': 1, 'shard_id': 0}}}
2025-05-30 19:08:35 | INFO | metric_online:run_with_hydra:889 - Total tasks generated: 1
2025-05-30 19:08:35 | INFO | metric_online:run_with_hydra:902 - Starting parallel execution with n_jobs=1...
2025-05-30 19:08:42 | INFO | metric_online:main2:781 - save train test done /root/data/Research1//feature/finalcomd//B8Wstats250412/B8Wstats250412_0--combo52
2025-05-30 19:10:47 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:48 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:49 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:49 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:51 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:52 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:53 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:54 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:54 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:54 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:56 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:56 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:56 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:57 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:59 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:10:59 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:00 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:00 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:00 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:00 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:01 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:02 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:02 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:02 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:03 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:05 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:07 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:09 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:10 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:10 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:10 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:12 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:13 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:14 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:14 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:14 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:11:15 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
{'obj': 'Sharpe', 'rm': 'MDD', 'model': 'Classic', 'method_mu': 'hist', 'method_cov': 'hist', 'linkage': 'single', 'leaf_order': True, 'codependence': 'pearson', 'lookback_period': 256, 'every': 10, 'nea': 5, 'split_every': False, 'normalize_every': False}

  1%|          | 1/105 [00:08<14:34,  8.40s/it, 2020-01-17 → 2021-02-04]
  2%|▏         | 2/105 [00:14<12:01,  7.01s/it, 2020-02-08 → 2021-02-25]
  3%|▎         | 3/105 [00:20<11:08,  6.56s/it, 2020-02-22 → 2021-03-11]
  4%|▍         | 4/105 [00:26<10:37,  6.32s/it, 2020-03-07 → 2021-03-25]
  5%|▍         | 5/105 [00:32<10:16,  6.16s/it, 2020-03-21 → 2021-04-09]
  6%|▌         | 6/105 [00:38<10:04,  6.10s/it, 2020-04-04 → 2021-04-23]
  7%|▋         | 7/105 [00:44<09:55,  6.07s/it, 2020-04-21 → 2021-05-12]
  8%|▊         | 8/105 [00:50<09:51,  6.09s/it, 2020-05-08 → 2021-05-26]
  9%|▊         | 9/105 [00:56<09:45,  6.10s/it, 2020-05-22 → 2021-06-09]
 10%|▉         | 10/105 [01:02<09:39,  6.10s/it, 2020-06-05 → 2021-06-24]
 10%|█         | 11/105 [01:08<09:31,  6.08s/it, 2020-06-19 → 2021-07-08]
 11%|█▏        | 12/105 [01:14<09:23,  6.06s/it, 2020-07-07 → 2021-07-22]
 12%|█▏        | 13/105 [01:20<09:16,  6.05s/it, 2020-07-21 → 2021-08-05]
 13%|█▎        | 14/105 [01:26<09:10,  6.05s/it, 2020-08-04 → 2021-08-19]
 14%|█▍        | 15/105 [01:32<09:03,  6.04s/it, 2020-08-18 → 2021-09-02]
 15%|█▌        | 16/105 [01:38<08:57,  6.04s/it, 2020-09-01 → 2021-09-16]
 16%|█▌        | 17/105 [01:44<08:51,  6.04s/it, 2020-09-15 → 2021-10-09]
 17%|█▋        | 18/105 [01:50<08:45,  6.04s/it, 2020-09-29 → 2021-10-23]
 18%|█▊        | 19/105 [01:56<08:40,  6.05s/it, 2020-10-21 → 2021-11-06]
 19%|█▉        | 20/105 [02:03<08:33,  6.05s/it, 2020-11-04 → 2021-11-20]
 20%|██        | 21/105 [02:09<08:29,  6.06s/it, 2020-11-18 → 2021-12-04]
 21%|██        | 22/105 [02:15<08:24,  6.08s/it, 2020-12-02 → 2021-12-18]
 22%|██▏       | 23/105 [02:21<08:18,  6.08s/it, 2020-12-16 → 2022-01-01]
 23%|██▎       | 24/105 [02:27<08:14,  6.10s/it, 2020-12-30 → 2022-01-18]
 24%|██▍       | 25/105 [02:33<08:08,  6.11s/it, 2021-01-14 → 2022-02-08]
 25%|██▍       | 26/105 [02:39<08:04,  6.13s/it, 2021-01-28 → 2022-02-22]
 26%|██▌       | 27/105 [02:45<07:58,  6.13s/it, 2021-02-11 → 2022-03-08]
 27%|██▋       | 28/105 [02:52<07:52,  6.13s/it, 2021-03-04 → 2022-03-22]
 28%|██▊       | 29/105 [02:58<07:43,  6.09s/it, 2021-03-18 → 2022-04-07]
 29%|██▊       | 30/105 [03:04<07:36,  6.09s/it, 2021-04-01 → 2022-04-21]
 30%|██▉       | 31/105 [03:10<07:29,  6.08s/it, 2021-04-16 → 2022-05-10]
 30%|███       | 32/105 [03:16<07:22,  6.06s/it, 2021-04-30 → 2022-05-24]
 31%|███▏      | 33/105 [03:22<07:15,  6.04s/it, 2021-05-19 → 2022-06-08]
 32%|███▏      | 34/105 [03:28<07:10,  6.06s/it, 2021-06-02 → 2022-06-22]
 33%|███▎      | 35/105 [03:34<07:04,  6.07s/it, 2021-06-17 → 2022-07-06]
 34%|███▍      | 36/105 [03:40<06:57,  6.05s/it, 2021-07-01 → 2022-07-20]
 35%|███▌      | 37/105 [03:46<06:50,  6.04s/it, 2021-07-15 → 2022-08-03]
 36%|███▌      | 38/105 [03:52<06:44,  6.03s/it, 2021-07-29 → 2022-08-17]
 37%|███▋      | 39/105 [03:58<06:37,  6.02s/it, 2021-08-12 → 2022-08-31]
 38%|███▊      | 40/105 [04:04<06:30,  6.01s/it, 2021-08-26 → 2022-09-15]
 39%|███▉      | 41/105 [04:10<06:24,  6.01s/it, 2021-09-09 → 2022-09-29]
 40%|████      | 42/105 [04:16<06:19,  6.02s/it, 2021-09-25 → 2022-10-20]
 41%|████      | 43/105 [04:22<06:13,  6.02s/it, 2021-10-16 → 2022-11-03]
 42%|████▏     | 44/105 [04:28<06:09,  6.05s/it, 2021-10-30 → 2022-11-17]
 43%|████▎     | 45/105 [04:34<06:05,  6.09s/it, 2021-11-13 → 2022-12-01]
 44%|████▍     | 46/105 [04:41<06:05,  6.20s/it, 2021-11-27 → 2022-12-15]
 45%|████▍     | 47/105 [04:47<05:57,  6.16s/it, 2021-12-11 → 2022-12-29]
 46%|████▌     | 48/105 [04:53<05:50,  6.14s/it, 2021-12-25 → 2023-01-13]
 47%|████▋     | 49/105 [04:59<05:39,  6.07s/it, 2022-01-11 → 2023-02-03]
 48%|████▊     | 50/105 [05:05<05:31,  6.03s/it, 2022-01-25 → 2023-02-17]
 49%|████▊     | 51/105 [05:11<05:25,  6.03s/it, 2022-02-15 → 2023-03-03]
 50%|████▉     | 52/105 [05:17<05:20,  6.06s/it, 2022-03-01 → 2023-03-17]
 50%|█████     | 53/105 [05:23<05:15,  6.07s/it, 2022-03-15 → 2023-03-31]
 51%|█████▏    | 54/105 [05:29<05:09,  6.06s/it, 2022-03-29 → 2023-04-15]
 52%|█████▏    | 55/105 [05:35<05:02,  6.06s/it, 2022-04-14 → 2023-04-29]
 53%|█████▎    | 56/105 [05:41<04:56,  6.06s/it, 2022-04-28 → 2023-05-18]
 54%|█████▍    | 57/105 [05:47<04:51,  6.07s/it, 2022-05-17 → 2023-06-01]
 55%|█████▌    | 58/105 [05:53<04:45,  6.07s/it, 2022-05-31 → 2023-06-15]
 56%|█████▌    | 59/105 [05:59<04:39,  6.08s/it, 2022-06-15 → 2023-07-01]
 57%|█████▋    | 60/105 [06:05<04:33,  6.07s/it, 2022-06-29 → 2023-07-15]
 58%|█████▊    | 61/105 [06:12<04:27,  6.09s/it, 2022-07-13 → 2023-07-29]
 59%|█████▉    | 62/105 [06:18<04:21,  6.09s/it, 2022-07-27 → 2023-08-12]
 60%|██████    | 63/105 [06:24<04:15,  6.08s/it, 2022-08-10 → 2023-08-26]
 61%|██████    | 64/105 [06:30<04:09,  6.08s/it, 2022-08-24 → 2023-09-09]
 62%|██████▏   | 65/105 [06:36<04:03,  6.08s/it, 2022-09-07 → 2023-09-23]
 63%|██████▎   | 66/105 [06:42<03:57,  6.08s/it, 2022-09-22 → 2023-10-17]
 64%|██████▍   | 67/105 [06:48<03:51,  6.08s/it, 2022-10-13 → 2023-10-31]
 65%|██████▍   | 68/105 [06:54<03:45,  6.09s/it, 2022-10-27 → 2023-11-14]
 66%|██████▌   | 69/105 [07:00<03:39,  6.09s/it, 2022-11-10 → 2023-11-28]
 67%|██████▋   | 70/105 [07:06<03:33,  6.09s/it, 2022-11-24 → 2023-12-12]
 68%|██████▊   | 71/105 [07:12<03:27,  6.09s/it, 2022-12-08 → 2023-12-26]
 69%|██████▊   | 72/105 [07:19<03:21,  6.11s/it, 2022-12-22 → 2024-01-10]
 70%|██████▉   | 73/105 [07:25<03:16,  6.14s/it, 2023-01-06 → 2024-01-24]
 70%|███████   | 74/105 [07:31<03:11,  6.17s/it, 2023-01-20 → 2024-02-07]
 71%|███████▏  | 75/105 [07:37<03:05,  6.17s/it, 2023-02-10 → 2024-02-29]
 72%|███████▏  | 76/105 [07:43<02:59,  6.19s/it, 2023-02-24 → 2024-03-14]
 73%|███████▎  | 77/105 [07:50<02:53,  6.21s/it, 2023-03-10 → 2024-03-28]
 74%|███████▍  | 78/105 [07:56<02:47,  6.21s/it, 2023-03-24 → 2024-04-13]
 75%|███████▌  | 79/105 [08:02<02:40,  6.19s/it, 2023-04-08 → 2024-04-27]
 76%|███████▌  | 80/105 [08:08<02:34,  6.17s/it, 2023-04-22 → 2024-05-16]
 77%|███████▋  | 81/105 [08:14<02:28,  6.17s/it, 2023-05-11 → 2024-05-30]
 78%|███████▊  | 82/105 [08:21<02:22,  6.18s/it, 2023-05-25 → 2024-06-14]
 79%|███████▉  | 83/105 [08:27<02:16,  6.19s/it, 2023-06-08 → 2024-06-28]
 80%|████████  | 84/105 [08:33<02:09,  6.16s/it, 2023-06-22 → 2024-07-12]
 81%|████████  | 85/105 [08:39<02:02,  6.13s/it, 2023-07-08 → 2024-07-26]
 82%|████████▏ | 86/105 [08:45<01:56,  6.13s/it, 2023-07-22 → 2024-08-09]
 83%|████████▎ | 87/105 [08:51<01:50,  6.14s/it, 2023-08-05 → 2024-08-23]
 84%|████████▍ | 88/105 [08:57<01:44,  6.13s/it, 2023-08-19 → 2024-09-06]
 85%|████████▍ | 89/105 [09:04<01:38,  6.15s/it, 2023-09-02 → 2024-09-24]
 86%|████████▌ | 90/105 [09:10<01:32,  6.17s/it, 2023-09-16 → 2024-10-15]
 87%|████████▋ | 91/105 [09:16<01:26,  6.18s/it, 2023-10-10 → 2024-10-29]
 88%|████████▊ | 92/105 [09:22<01:20,  6.20s/it, 2023-10-24 → 2024-11-12]
 89%|████████▊ | 93/105 [09:28<01:14,  6.21s/it, 2023-11-07 → 2024-11-26]
 90%|████████▉ | 94/105 [09:35<01:08,  6.22s/it, 2023-11-21 → 2024-12-10]
 90%|█████████ | 95/105 [09:41<01:02,  6.22s/it, 2023-12-05 → 2024-12-24]
 91%|█████████▏| 96/105 [09:47<00:55,  6.19s/it, 2023-12-19 → 2025-01-08]
 92%|█████████▏| 97/105 [09:53<00:49,  6.20s/it, 2024-01-03 → 2025-01-22]
 93%|█████████▎| 98/105 [09:59<00:43,  6.20s/it, 2024-01-17 → 2025-02-13]
 94%|█████████▍| 99/105 [10:06<00:37,  6.20s/it, 2024-01-31 → 2025-02-27]
 95%|█████████▌| 100/105 [10:12<00:31,  6.22s/it, 2024-02-22 → 2025-03-13]
 96%|█████████▌| 101/105 [10:18<00:24,  6.21s/it, 2024-03-07 → 2025-03-27]
 97%|█████████▋| 102/105 [10:24<00:18,  6.17s/it, 2024-03-21 → 2025-04-11]
 98%|█████████▊| 103/105 [10:30<00:12,  6.15s/it, 2024-04-04 → 2025-04-26]
 99%|█████████▉| 104/105 [10:36<00:06,  6.14s/it, 2024-04-20 → 2025-05-15]
100%|██████████| 105/105 [10:42<00:00,  6.13s/it, 2024-04-20 → 2025-05-15]
100%|██████████| 105/105 [10:42<00:00,  6.12s/it, 2024-04-20 → 2025-05-15]
2025-05-30 19:22:00 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:463 - [v7] 优化前的夏普率: 1.04248
2025-05-30 19:22:00 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:464 - [v7] 优化后的夏普率: 0.71254
2025-05-30 19:22:00 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:01 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:03 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:04 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:04 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:05 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:05 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:07 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:07 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:09 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:09 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:10 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:13 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:13 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:14 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:14 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:15 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:15 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:22:16 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
{'obj': 'Sharpe', 'rm': 'MDD', 'model': 'Classic', 'method_mu': 'hist', 'method_cov': 'hist', 'linkage': 'single', 'leaf_order': True, 'codependence': 'pearson', 'lookback_period': 256, 'every': 10, 'nea': 5, 'split_every': False, 'normalize_every': False}

  1%|          | 1/105 [00:05<10:21,  5.97s/it, 2020-01-18 → 2021-02-05]
  2%|▏         | 2/105 [00:11<10:13,  5.96s/it, 2020-02-11 → 2021-02-26]
  3%|▎         | 3/105 [00:17<10:12,  6.01s/it, 2020-02-25 → 2021-03-12]
  4%|▍         | 4/105 [00:23<10:00,  5.94s/it, 2020-03-10 → 2021-03-26]
  5%|▍         | 5/105 [00:29<09:50,  5.91s/it, 2020-03-24 → 2021-04-10]
  6%|▌         | 6/105 [00:35<09:46,  5.92s/it, 2020-04-08 → 2021-04-24]
  7%|▋         | 7/105 [00:41<09:42,  5.94s/it, 2020-04-22 → 2021-05-13]
  8%|▊         | 8/105 [00:47<09:37,  5.96s/it, 2020-05-09 → 2021-05-27]
  9%|▊         | 9/105 [00:53<09:33,  5.97s/it, 2020-05-23 → 2021-06-10]
 10%|▉         | 10/105 [00:59<09:30,  6.00s/it, 2020-06-06 → 2021-06-25]
 10%|█         | 11/105 [01:05<09:25,  6.01s/it, 2020-06-20 → 2021-07-09]
 11%|█▏        | 12/105 [01:11<09:18,  6.01s/it, 2020-07-08 → 2021-07-23]
 12%|█▏        | 13/105 [01:17<09:13,  6.01s/it, 2020-07-22 → 2021-08-06]
 13%|█▎        | 14/105 [01:23<09:09,  6.04s/it, 2020-08-05 → 2021-08-20]
 14%|█▍        | 15/105 [01:29<09:05,  6.06s/it, 2020-08-19 → 2021-09-03]
 15%|█▌        | 16/105 [01:36<09:02,  6.09s/it, 2020-09-02 → 2021-09-17]
 16%|█▌        | 17/105 [01:42<08:57,  6.11s/it, 2020-09-16 → 2021-10-12]
 17%|█▋        | 18/105 [01:48<08:52,  6.13s/it, 2020-09-30 → 2021-10-26]
 18%|█▊        | 19/105 [01:54<08:48,  6.14s/it, 2020-10-22 → 2021-11-09]
 19%|█▉        | 20/105 [02:00<08:43,  6.15s/it, 2020-11-05 → 2021-11-23]
 20%|██        | 21/105 [02:06<08:38,  6.17s/it, 2020-11-19 → 2021-12-07]
 21%|██        | 22/105 [02:13<08:32,  6.17s/it, 2020-12-03 → 2021-12-21]
 22%|██▏       | 23/105 [02:19<08:25,  6.17s/it, 2020-12-17 → 2022-01-05]
 23%|██▎       | 24/105 [02:25<08:17,  6.14s/it, 2020-12-31 → 2022-01-19]
 24%|██▍       | 25/105 [02:31<08:08,  6.10s/it, 2021-01-15 → 2022-02-09]
 25%|██▍       | 26/105 [02:37<07:59,  6.08s/it, 2021-01-29 → 2022-02-23]
 26%|██▌       | 27/105 [02:43<07:53,  6.07s/it, 2021-02-19 → 2022-03-09]
 27%|██▋       | 28/105 [02:49<07:49,  6.10s/it, 2021-03-05 → 2022-03-23]
 28%|██▊       | 29/105 [02:55<07:43,  6.09s/it, 2021-03-19 → 2022-04-08]
 29%|██▊       | 30/105 [03:01<07:36,  6.08s/it, 2021-04-02 → 2022-04-22]
 30%|██▉       | 31/105 [03:07<07:28,  6.06s/it, 2021-04-17 → 2022-05-11]
 30%|███       | 32/105 [03:13<07:22,  6.06s/it, 2021-05-01 → 2022-05-25]
 31%|███▏      | 33/105 [03:19<07:15,  6.05s/it, 2021-05-20 → 2022-06-09]
 32%|███▏      | 34/105 [03:25<07:08,  6.04s/it, 2021-06-03 → 2022-06-23]
 33%|███▎      | 35/105 [03:31<07:03,  6.05s/it, 2021-06-18 → 2022-07-07]
 34%|███▍      | 36/105 [03:37<06:56,  6.04s/it, 2021-07-02 → 2022-07-21]
 35%|███▌      | 37/105 [03:43<06:50,  6.03s/it, 2021-07-16 → 2022-08-04]
 36%|███▌      | 38/105 [03:49<06:43,  6.02s/it, 2021-07-30 → 2022-08-18]
 37%|███▋      | 39/105 [03:55<06:37,  6.02s/it, 2021-08-13 → 2022-09-01]
 38%|███▊      | 40/105 [04:01<06:30,  6.01s/it, 2021-08-27 → 2022-09-16]
 39%|███▉      | 41/105 [04:07<06:24,  6.01s/it, 2021-09-10 → 2022-09-30]
 40%|████      | 42/105 [04:14<06:18,  6.01s/it, 2021-09-28 → 2022-10-21]
 41%|████      | 43/105 [04:20<06:12,  6.01s/it, 2021-10-19 → 2022-11-04]
 42%|████▏     | 44/105 [04:26<06:07,  6.02s/it, 2021-11-02 → 2022-11-18]
 43%|████▎     | 45/105 [04:32<06:02,  6.03s/it, 2021-11-16 → 2022-12-02]
 44%|████▍     | 46/105 [04:38<05:56,  6.04s/it, 2021-11-30 → 2022-12-16]
 45%|████▍     | 47/105 [04:44<05:49,  6.03s/it, 2021-12-14 → 2022-12-30]
 46%|████▌     | 48/105 [04:50<05:43,  6.03s/it, 2021-12-28 → 2023-01-14]
 47%|████▋     | 49/105 [04:56<05:34,  5.97s/it, 2022-01-12 → 2023-02-04]
 48%|████▊     | 50/105 [05:01<05:25,  5.92s/it, 2022-01-26 → 2023-02-18]
 49%|████▊     | 51/105 [05:07<05:20,  5.94s/it, 2022-02-16 → 2023-03-04]
 50%|████▉     | 52/105 [05:13<05:17,  5.99s/it, 2022-03-02 → 2023-03-18]
 50%|█████     | 53/105 [05:20<05:13,  6.03s/it, 2022-03-16 → 2023-04-01]
 51%|█████▏    | 54/105 [05:26<05:09,  6.06s/it, 2022-03-30 → 2023-04-18]
 52%|█████▏    | 55/105 [05:32<05:04,  6.09s/it, 2022-04-15 → 2023-05-05]
 53%|█████▎    | 56/105 [05:38<04:59,  6.11s/it, 2022-04-29 → 2023-05-19]
 54%|█████▍    | 57/105 [05:44<04:52,  6.10s/it, 2022-05-18 → 2023-06-02]
 55%|█████▌    | 58/105 [05:50<04:47,  6.11s/it, 2022-06-01 → 2023-06-16]
 56%|█████▌    | 59/105 [05:56<04:41,  6.12s/it, 2022-06-16 → 2023-07-04]
 57%|█████▋    | 60/105 [06:03<04:35,  6.12s/it, 2022-06-30 → 2023-07-18]
 58%|█████▊    | 61/105 [06:09<04:29,  6.11s/it, 2022-07-14 → 2023-08-01]
 59%|█████▉    | 62/105 [06:15<04:22,  6.11s/it, 2022-07-28 → 2023-08-15]
 60%|██████    | 63/105 [06:21<04:17,  6.13s/it, 2022-08-11 → 2023-08-29]
 61%|██████    | 64/105 [06:27<04:12,  6.15s/it, 2022-08-25 → 2023-09-12]
 62%|██████▏   | 65/105 [06:33<04:05,  6.14s/it, 2022-09-08 → 2023-09-26]
 63%|██████▎   | 66/105 [06:39<04:00,  6.15s/it, 2022-09-23 → 2023-10-18]
 64%|██████▍   | 67/105 [06:46<03:54,  6.16s/it, 2022-10-14 → 2023-11-01]
 65%|██████▍   | 68/105 [06:52<03:48,  6.18s/it, 2022-10-28 → 2023-11-15]
 66%|██████▌   | 69/105 [06:58<03:41,  6.16s/it, 2022-11-11 → 2023-11-29]
 67%|██████▋   | 70/105 [07:04<03:35,  6.15s/it, 2022-11-25 → 2023-12-13]
 68%|██████▊   | 71/105 [07:10<03:28,  6.14s/it, 2022-12-09 → 2023-12-27]
 69%|██████▊   | 72/105 [07:16<03:23,  6.16s/it, 2022-12-23 → 2024-01-11]
 70%|██████▉   | 73/105 [07:23<03:17,  6.16s/it, 2023-01-07 → 2024-01-25]
 70%|███████   | 74/105 [07:29<03:12,  6.20s/it, 2023-01-21 → 2024-02-08]
 71%|███████▏  | 75/105 [07:35<03:06,  6.21s/it, 2023-02-11 → 2024-03-01]
 72%|███████▏  | 76/105 [07:41<02:59,  6.20s/it, 2023-02-25 → 2024-03-15]
 73%|███████▎  | 77/105 [07:47<02:54,  6.23s/it, 2023-03-11 → 2024-03-29]
 74%|███████▍  | 78/105 [07:54<02:47,  6.20s/it, 2023-03-25 → 2024-04-16]
 75%|███████▌  | 79/105 [08:00<02:41,  6.21s/it, 2023-04-11 → 2024-04-30]
 76%|███████▌  | 80/105 [08:06<02:34,  6.20s/it, 2023-04-25 → 2024-05-17]
 77%|███████▋  | 81/105 [08:12<02:29,  6.21s/it, 2023-05-12 → 2024-05-31]
 78%|███████▊  | 82/105 [08:18<02:22,  6.20s/it, 2023-05-26 → 2024-06-15]
 79%|███████▉  | 83/105 [08:25<02:15,  6.18s/it, 2023-06-09 → 2024-06-29]
 80%|████████  | 84/105 [08:31<02:10,  6.21s/it, 2023-06-27 → 2024-07-13]
 81%|████████  | 85/105 [08:37<02:04,  6.21s/it, 2023-07-11 → 2024-07-27]
 82%|████████▏ | 86/105 [08:43<01:58,  6.21s/it, 2023-07-25 → 2024-08-10]
 83%|████████▎ | 87/105 [08:49<01:51,  6.20s/it, 2023-08-08 → 2024-08-24]
 84%|████████▍ | 88/105 [08:56<01:44,  6.17s/it, 2023-08-22 → 2024-09-07]
 85%|████████▍ | 89/105 [09:02<01:38,  6.16s/it, 2023-09-05 → 2024-09-25]
 86%|████████▌ | 90/105 [09:08<01:32,  6.16s/it, 2023-09-19 → 2024-10-16]
 87%|████████▋ | 91/105 [09:14<01:26,  6.18s/it, 2023-10-11 → 2024-10-30]
 88%|████████▊ | 92/105 [09:20<01:20,  6.19s/it, 2023-10-25 → 2024-11-13]
 89%|████████▊ | 93/105 [09:26<01:14,  6.20s/it, 2023-11-08 → 2024-11-27]
 90%|████████▉ | 94/105 [09:33<01:08,  6.20s/it, 2023-11-22 → 2024-12-11]
 90%|█████████ | 95/105 [09:39<01:01,  6.19s/it, 2023-12-06 → 2024-12-25]
 91%|█████████▏| 96/105 [09:45<00:55,  6.16s/it, 2023-12-20 → 2025-01-09]
 92%|█████████▏| 97/105 [09:51<00:49,  6.14s/it, 2024-01-04 → 2025-01-23]
 93%|█████████▎| 98/105 [09:57<00:42,  6.13s/it, 2024-01-18 → 2025-02-14]
 94%|█████████▍| 99/105 [10:03<00:36,  6.14s/it, 2024-02-01 → 2025-02-28]
 95%|█████████▌| 100/105 [10:10<00:30,  6.17s/it, 2024-02-23 → 2025-03-14]
 96%|█████████▌| 101/105 [10:16<00:24,  6.18s/it, 2024-03-08 → 2025-03-28]
 97%|█████████▋| 102/105 [10:22<00:18,  6.17s/it, 2024-03-22 → 2025-04-15]
 98%|█████████▊| 103/105 [10:28<00:12,  6.17s/it, 2024-04-09 → 2025-04-29]
 99%|█████████▉| 104/105 [10:34<00:06,  6.15s/it, 2024-04-23 → 2025-05-16]
100%|██████████| 105/105 [10:40<00:00,  6.16s/it, 2024-04-23 → 2025-05-16]
100%|██████████| 105/105 [10:40<00:00,  6.10s/it, 2024-04-23 → 2025-05-16]
2025-05-30 19:32:57 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:463 - [v8] 优化前的夏普率: 0.76457
2025-05-30 19:32:57 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:464 - [v8] 优化后的夏普率: 0.96367
2025-05-30 19:32:58 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:32:58 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:00 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:01 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:02 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:05 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:05 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:05 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:07 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:09 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:10 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:11 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:11 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:12 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:12 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-05-30 19:33:14 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
[2025-05-30 19:33:15,316][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:15,318][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:15,325][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:15,326][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:15,333][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:15,334][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:17,298][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:17,299][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:17,307][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:17,308][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:17,314][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:17,315][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:19,103][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:19,104][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:19,111][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:19,112][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:19,119][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-05-30 19:33:19,120][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
2025-05-30 19:33:23 | INFO | metric_online:run_with_hydra:919 - {'action': 'parallel_done', 'success_count': 1, 'fail_count': 0}
2025-05-30 19:33:23 | INFO | metric_online:run_with_hydra:924 - {'action': 'success', 'description': 'metric_online 完成'}