LogViewer
2025-07-08 19:07:28 | WARNING | dataFuture:get_latest_valid_dir:99 - 使用的数据目录日期(2025-07-07)不是今天(2025-07-08),可能不是最新数据
生成的参数组合数量:18
2025-07-08 19:07:31 | INFO | metric_online:run_with_hydra:842 - {'envs': {'env': {'mode': 'prod', 'enable_monitor': False, 'n_jobs': 1}, 'incremental': {'enabled': True, 'lookback_days': 20, 'start_date': None, 'end_date': 'today'}, 'run': {'n_jobs': 1, 'retry_times': 3, 'retry_delay': 2}, 'shard': {'num_shards': 1, 'shard_id': 0}}}
2025-07-08 19:07:32 | INFO | metric_online:run_with_hydra:889 - Total tasks generated: 1
2025-07-08 19:07:32 | INFO | metric_online:run_with_hydra:902 - Starting parallel execution with n_jobs=1...
2025-07-08 19:07:39 | INFO | metric_online:main2:781 - save train test done /root/data/Research1//feature/finalcomd//B8Wstats250412/B8Wstats250412_0--combo52
2025-07-08 19:09:52 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:52 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:53 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:54 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:57 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:57 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:57 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:58 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:09:59 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:00 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:02 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:03 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:03 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:04 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:04 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:05 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:05 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:06 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:06 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:06 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:07 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:08 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:08 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:09 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:09 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:09 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:10 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:10 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:10 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:11 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:12 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:13 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:13 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:15 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:15 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:16 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:16 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:16 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:17 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:17 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:17 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:18 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:18 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:18 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:19 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:19 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:19 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:20 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:10:20 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
{'obj': 'Sharpe', 'rm': 'MDD', 'model': 'Classic', 'method_mu': 'hist', 'method_cov': 'hist', 'linkage': 'single', 'leaf_order': True, 'codependence': 'pearson', 'lookback_period': 256, 'every': 10, 'nea': 5, 'split_every': False, 'normalize_every': False}

  1%|          | 1/107 [00:08<14:42,  8.32s/it, 2020-01-17 → 2021-02-04]
  2%|▏         | 2/107 [00:14<12:08,  6.94s/it, 2020-02-08 → 2021-02-25]
  3%|▎         | 3/107 [00:20<11:16,  6.50s/it, 2020-02-22 → 2021-03-11]
  4%|▎         | 4/107 [00:26<10:44,  6.26s/it, 2020-03-07 → 2021-03-25]
  5%|▍         | 5/107 [00:32<10:25,  6.13s/it, 2020-03-21 → 2021-04-09]
  6%|▌         | 6/107 [00:37<10:11,  6.06s/it, 2020-04-04 → 2021-04-23]
  7%|▋         | 7/107 [00:44<10:05,  6.06s/it, 2020-04-21 → 2021-05-12]
  7%|▋         | 8/107 [00:50<09:58,  6.04s/it, 2020-05-08 → 2021-05-26]
  8%|▊         | 9/107 [00:56<09:52,  6.05s/it, 2020-05-22 → 2021-06-09]
  9%|▉         | 10/107 [01:02<09:45,  6.04s/it, 2020-06-05 → 2021-06-24]
 10%|█         | 11/107 [01:08<09:38,  6.03s/it, 2020-06-19 → 2021-07-08]
 11%|█         | 12/107 [01:14<09:33,  6.04s/it, 2020-07-07 → 2021-07-22]
 12%|█▏        | 13/107 [01:20<09:27,  6.04s/it, 2020-07-21 → 2021-08-05]
 13%|█▎        | 14/107 [01:26<09:23,  6.06s/it, 2020-08-04 → 2021-08-19]
 14%|█▍        | 15/107 [01:32<09:19,  6.08s/it, 2020-08-18 → 2021-09-02]
 15%|█▍        | 16/107 [01:38<09:13,  6.09s/it, 2020-09-01 → 2021-09-16]
 16%|█▌        | 17/107 [01:44<09:06,  6.07s/it, 2020-09-15 → 2021-10-09]
 17%|█▋        | 18/107 [01:50<09:02,  6.10s/it, 2020-09-29 → 2021-10-23]
 18%|█▊        | 19/107 [01:56<08:56,  6.10s/it, 2020-10-21 → 2021-11-06]
 19%|█▊        | 20/107 [02:03<08:51,  6.11s/it, 2020-11-04 → 2021-11-20]
 20%|█▉        | 21/107 [02:09<08:43,  6.09s/it, 2020-11-18 → 2021-12-04]
 21%|██        | 22/107 [02:15<08:38,  6.10s/it, 2020-12-02 → 2021-12-18]
 21%|██▏       | 23/107 [02:21<08:34,  6.12s/it, 2020-12-16 → 2022-01-01]
 22%|██▏       | 24/107 [02:27<08:28,  6.12s/it, 2020-12-30 → 2022-01-18]
 23%|██▎       | 25/107 [02:33<08:23,  6.14s/it, 2021-01-14 → 2022-02-08]
 24%|██▍       | 26/107 [02:39<08:16,  6.13s/it, 2021-01-28 → 2022-02-22]
 25%|██▌       | 27/107 [02:45<08:10,  6.13s/it, 2021-02-11 → 2022-03-08]
 26%|██▌       | 28/107 [02:52<08:04,  6.13s/it, 2021-03-04 → 2022-03-22]
 27%|██▋       | 29/107 [02:58<07:58,  6.13s/it, 2021-03-18 → 2022-04-07]
 28%|██▊       | 30/107 [03:04<07:51,  6.13s/it, 2021-04-01 → 2022-04-21]
 29%|██▉       | 31/107 [03:10<07:45,  6.13s/it, 2021-04-16 → 2022-05-10]
 30%|██▉       | 32/107 [03:16<07:39,  6.13s/it, 2021-04-30 → 2022-05-24]
 31%|███       | 33/107 [03:22<07:34,  6.14s/it, 2021-05-19 → 2022-06-08]
 32%|███▏      | 34/107 [03:28<07:27,  6.13s/it, 2021-06-02 → 2022-06-22]
 33%|███▎      | 35/107 [03:34<07:20,  6.12s/it, 2021-06-17 → 2022-07-06]
 34%|███▎      | 36/107 [03:41<07:15,  6.13s/it, 2021-07-01 → 2022-07-20]
 35%|███▍      | 37/107 [03:47<07:08,  6.12s/it, 2021-07-15 → 2022-08-03]
 36%|███▌      | 38/107 [03:53<07:00,  6.09s/it, 2021-07-29 → 2022-08-17]
 36%|███▋      | 39/107 [03:59<06:53,  6.09s/it, 2021-08-12 → 2022-08-31]
 37%|███▋      | 40/107 [04:05<06:47,  6.08s/it, 2021-08-26 → 2022-09-15]
 38%|███▊      | 41/107 [04:11<06:40,  6.07s/it, 2021-09-09 → 2022-09-29]
 39%|███▉      | 42/107 [04:17<06:33,  6.05s/it, 2021-09-25 → 2022-10-20]
 40%|████      | 43/107 [04:23<06:26,  6.04s/it, 2021-10-16 → 2022-11-03]
 41%|████      | 44/107 [04:29<06:20,  6.04s/it, 2021-10-30 → 2022-11-17]
 42%|████▏     | 45/107 [04:35<06:14,  6.04s/it, 2021-11-13 → 2022-12-01]
 43%|████▎     | 46/107 [04:41<06:14,  6.14s/it, 2021-11-27 → 2022-12-15]
 44%|████▍     | 47/107 [04:47<06:06,  6.11s/it, 2021-12-11 → 2022-12-29]
 45%|████▍     | 48/107 [04:53<05:58,  6.08s/it, 2021-12-25 → 2023-01-13]
 46%|████▌     | 49/107 [04:59<05:48,  6.01s/it, 2022-01-11 → 2023-02-03]
 47%|████▋     | 50/107 [05:05<05:40,  5.98s/it, 2022-01-25 → 2023-02-17]
 48%|████▊     | 51/107 [05:11<05:35,  5.99s/it, 2022-02-15 → 2023-03-03]
 49%|████▊     | 52/107 [05:17<05:29,  6.00s/it, 2022-03-01 → 2023-03-17]
 50%|████▉     | 53/107 [05:23<05:25,  6.02s/it, 2022-03-15 → 2023-03-31]
 50%|█████     | 54/107 [05:29<05:20,  6.04s/it, 2022-03-29 → 2023-04-15]
 51%|█████▏    | 55/107 [05:36<05:15,  6.07s/it, 2022-04-14 → 2023-04-29]
 52%|█████▏    | 56/107 [05:42<05:11,  6.10s/it, 2022-04-28 → 2023-05-18]
 53%|█████▎    | 57/107 [05:48<05:06,  6.12s/it, 2022-05-17 → 2023-06-01]
 54%|█████▍    | 58/107 [05:54<04:59,  6.11s/it, 2022-05-31 → 2023-06-15]
 55%|█████▌    | 59/107 [06:00<04:54,  6.13s/it, 2022-06-15 → 2023-07-01]
 56%|█████▌    | 60/107 [06:06<04:48,  6.14s/it, 2022-06-29 → 2023-07-15]
 57%|█████▋    | 61/107 [06:12<04:43,  6.16s/it, 2022-07-13 → 2023-07-29]
 58%|█████▊    | 62/107 [06:19<04:36,  6.15s/it, 2022-07-27 → 2023-08-12]
 59%|█████▉    | 63/107 [06:25<04:30,  6.16s/it, 2022-08-10 → 2023-08-26]
 60%|█████▉    | 64/107 [06:31<04:24,  6.16s/it, 2022-08-24 → 2023-09-09]
 61%|██████    | 65/107 [06:37<04:15,  6.08s/it, 2022-09-07 → 2023-09-23]
 62%|██████▏   | 66/107 [06:43<04:07,  6.05s/it, 2022-09-22 → 2023-10-17]
 63%|██████▎   | 67/107 [06:49<04:02,  6.06s/it, 2022-10-13 → 2023-10-31]
 64%|██████▎   | 68/107 [06:55<03:58,  6.12s/it, 2022-10-27 → 2023-11-14]
 64%|██████▍   | 69/107 [07:01<03:53,  6.15s/it, 2022-11-10 → 2023-11-28]
 65%|██████▌   | 70/107 [07:08<03:49,  6.19s/it, 2022-11-24 → 2023-12-12]
 66%|██████▋   | 71/107 [07:14<03:43,  6.22s/it, 2022-12-08 → 2023-12-26]
 67%|██████▋   | 72/107 [07:20<03:38,  6.23s/it, 2022-12-22 → 2024-01-10]
 68%|██████▊   | 73/107 [07:26<03:32,  6.25s/it, 2023-01-06 → 2024-01-24]
 69%|██████▉   | 74/107 [07:33<03:25,  6.23s/it, 2023-01-20 → 2024-02-07]
 70%|███████   | 75/107 [07:39<03:19,  6.23s/it, 2023-02-10 → 2024-02-29]
 71%|███████   | 76/107 [07:45<03:14,  6.26s/it, 2023-02-24 → 2024-03-14]
 72%|███████▏  | 77/107 [07:52<03:07,  6.26s/it, 2023-03-10 → 2024-03-28]
 73%|███████▎  | 78/107 [07:58<03:01,  6.25s/it, 2023-03-24 → 2024-04-13]
 74%|███████▍  | 79/107 [08:04<02:55,  6.25s/it, 2023-04-08 → 2024-04-27]
 75%|███████▍  | 80/107 [08:10<02:49,  6.27s/it, 2023-04-22 → 2024-05-16]
 76%|███████▌  | 81/107 [08:17<02:42,  6.27s/it, 2023-05-11 → 2024-05-30]
 77%|███████▋  | 82/107 [08:23<02:36,  6.25s/it, 2023-05-25 → 2024-06-14]
 78%|███████▊  | 83/107 [08:29<02:29,  6.24s/it, 2023-06-08 → 2024-06-28]
 79%|███████▊  | 84/107 [08:35<02:23,  6.25s/it, 2023-06-22 → 2024-07-12]
 79%|███████▉  | 85/107 [08:42<02:18,  6.27s/it, 2023-07-08 → 2024-07-26]
 80%|████████  | 86/107 [08:48<02:11,  6.27s/it, 2023-07-22 → 2024-08-09]
 81%|████████▏ | 87/107 [08:54<02:05,  6.25s/it, 2023-08-05 → 2024-08-23]
 82%|████████▏ | 88/107 [09:00<01:58,  6.24s/it, 2023-08-19 → 2024-09-06]
 83%|████████▎ | 89/107 [09:07<01:52,  6.27s/it, 2023-09-02 → 2024-09-24]
 84%|████████▍ | 90/107 [09:13<01:46,  6.26s/it, 2023-09-16 → 2024-10-15]
 85%|████████▌ | 91/107 [09:19<01:40,  6.25s/it, 2023-10-10 → 2024-10-29]
 86%|████████▌ | 92/107 [09:25<01:33,  6.25s/it, 2023-10-24 → 2024-11-12]
 87%|████████▋ | 93/107 [09:32<01:27,  6.26s/it, 2023-11-07 → 2024-11-26]
 88%|████████▊ | 94/107 [09:38<01:21,  6.25s/it, 2023-11-21 → 2024-12-10]
 89%|████████▉ | 95/107 [09:44<01:14,  6.25s/it, 2023-12-05 → 2024-12-24]
 90%|████████▉ | 96/107 [09:50<01:09,  6.27s/it, 2023-12-19 → 2025-01-08]
 91%|█████████ | 97/107 [09:57<01:02,  6.29s/it, 2024-01-03 → 2025-01-22]
 92%|█████████▏| 98/107 [10:03<00:56,  6.31s/it, 2024-01-17 → 2025-02-13]
 93%|█████████▎| 99/107 [10:09<00:50,  6.30s/it, 2024-01-31 → 2025-02-27]
 93%|█████████▎| 100/107 [10:16<00:43,  6.27s/it, 2024-02-22 → 2025-03-13]
 94%|█████████▍| 101/107 [10:22<00:37,  6.26s/it, 2024-03-07 → 2025-03-27]
 95%|█████████▌| 102/107 [10:28<00:31,  6.25s/it, 2024-03-21 → 2025-04-11]
 96%|█████████▋| 103/107 [10:34<00:24,  6.25s/it, 2024-04-04 → 2025-04-26]
 97%|█████████▋| 104/107 [10:41<00:18,  6.27s/it, 2024-04-20 → 2025-05-15]
 98%|█████████▊| 105/107 [10:47<00:12,  6.31s/it, 2024-05-09 → 2025-06-18]
 99%|█████████▉| 106/107 [10:53<00:06,  6.32s/it, 2024-05-23 → 2025-07-02]
100%|██████████| 107/107 [11:00<00:00,  6.29s/it, 2024-05-23 → 2025-07-02]
100%|██████████| 107/107 [11:00<00:00,  6.17s/it, 2024-05-23 → 2025-07-02]
2025-07-08 19:21:23 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:463 - [v7] 优化前的夏普率: 1.04264
2025-07-08 19:21:23 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:464 - [v7] 优化后的夏普率: 0.78387
2025-07-08 19:21:23 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:24 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:26 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:26 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:27 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:29 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:30 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:30 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:31 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:31 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:31 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:32 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:33 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:33 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:33 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:34 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:35 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:35 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:36 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:37 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:37 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:37 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:38 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:38 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:38 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:21:39 | WARNING | func_backtester_hf:run_sig2pos:979 - The given signal has NaN. Will use 0 to fill
{'obj': 'Sharpe', 'rm': 'MDD', 'model': 'Classic', 'method_mu': 'hist', 'method_cov': 'hist', 'linkage': 'single', 'leaf_order': True, 'codependence': 'pearson', 'lookback_period': 256, 'every': 10, 'nea': 5, 'split_every': False, 'normalize_every': False}

  1%|          | 1/107 [00:05<10:28,  5.93s/it, 2020-01-18 → 2021-02-05]
  2%|▏         | 2/107 [00:11<10:23,  5.94s/it, 2020-02-11 → 2021-02-26]
  3%|▎         | 3/107 [00:17<10:19,  5.96s/it, 2020-02-25 → 2021-03-12]
  4%|▎         | 4/107 [00:23<10:08,  5.91s/it, 2020-03-10 → 2021-03-26]
  5%|▍         | 5/107 [00:29<09:57,  5.86s/it, 2020-03-24 → 2021-04-10]
  6%|▌         | 6/107 [00:35<09:52,  5.86s/it, 2020-04-08 → 2021-04-24]
  7%|▋         | 7/107 [00:41<09:48,  5.88s/it, 2020-04-22 → 2021-05-13]
  7%|▋         | 8/107 [00:47<09:49,  5.95s/it, 2020-05-09 → 2021-05-27]
  8%|▊         | 9/107 [00:53<09:48,  6.00s/it, 2020-05-23 → 2021-06-10]
  9%|▉         | 10/107 [00:59<09:45,  6.04s/it, 2020-06-06 → 2021-06-25]
 10%|█         | 11/107 [01:05<09:41,  6.06s/it, 2020-06-20 → 2021-07-09]
 11%|█         | 12/107 [01:11<09:36,  6.07s/it, 2020-07-08 → 2021-07-23]
 12%|█▏        | 13/107 [01:17<09:28,  6.05s/it, 2020-07-22 → 2021-08-06]
 13%|█▎        | 14/107 [01:23<09:21,  6.04s/it, 2020-08-05 → 2021-08-20]
 14%|█▍        | 15/107 [01:29<09:15,  6.04s/it, 2020-08-19 → 2021-09-03]
 15%|█▍        | 16/107 [01:35<09:09,  6.04s/it, 2020-09-02 → 2021-09-17]
 16%|█▌        | 17/107 [01:41<09:02,  6.03s/it, 2020-09-16 → 2021-10-12]
 17%|█▋        | 18/107 [01:47<08:57,  6.03s/it, 2020-09-30 → 2021-10-26]
 18%|█▊        | 19/107 [01:53<08:51,  6.04s/it, 2020-10-22 → 2021-11-09]
 19%|█▊        | 20/107 [02:00<08:45,  6.05s/it, 2020-11-05 → 2021-11-23]
 20%|█▉        | 21/107 [02:06<08:39,  6.04s/it, 2020-11-19 → 2021-12-07]
 21%|██        | 22/107 [02:12<08:35,  6.06s/it, 2020-12-03 → 2021-12-21]
 21%|██▏       | 23/107 [02:18<08:30,  6.08s/it, 2020-12-17 → 2022-01-05]
 22%|██▏       | 24/107 [02:24<08:26,  6.11s/it, 2020-12-31 → 2022-01-19]
 23%|██▎       | 25/107 [02:30<08:22,  6.13s/it, 2021-01-15 → 2022-02-09]
 24%|██▍       | 26/107 [02:36<08:17,  6.14s/it, 2021-01-29 → 2022-02-23]
 25%|██▌       | 27/107 [02:42<08:10,  6.13s/it, 2021-02-19 → 2022-03-09]
 26%|██▌       | 28/107 [02:49<08:04,  6.14s/it, 2021-03-05 → 2022-03-23]
 27%|██▋       | 29/107 [02:55<07:58,  6.13s/it, 2021-03-19 → 2022-04-08]
 28%|██▊       | 30/107 [03:01<07:50,  6.11s/it, 2021-04-02 → 2022-04-22]
 29%|██▉       | 31/107 [03:07<07:43,  6.10s/it, 2021-04-17 → 2022-05-11]
 30%|██▉       | 32/107 [03:13<07:35,  6.07s/it, 2021-05-01 → 2022-05-25]
 31%|███       | 33/107 [03:19<07:28,  6.06s/it, 2021-05-20 → 2022-06-09]
 32%|███▏      | 34/107 [03:25<07:22,  6.06s/it, 2021-06-03 → 2022-06-23]
 33%|███▎      | 35/107 [03:31<07:15,  6.04s/it, 2021-06-18 → 2022-07-07]
 34%|███▎      | 36/107 [03:37<07:08,  6.04s/it, 2021-07-02 → 2022-07-21]
 35%|███▍      | 37/107 [03:43<07:03,  6.05s/it, 2021-07-16 → 2022-08-04]
 36%|███▌      | 38/107 [03:49<06:57,  6.04s/it, 2021-07-30 → 2022-08-18]
 36%|███▋      | 39/107 [03:55<06:51,  6.05s/it, 2021-08-13 → 2022-09-01]
 37%|███▋      | 40/107 [04:01<06:44,  6.04s/it, 2021-08-27 → 2022-09-16]
 38%|███▊      | 41/107 [04:07<06:38,  6.03s/it, 2021-09-10 → 2022-09-30]
 39%|███▉      | 42/107 [04:13<06:32,  6.05s/it, 2021-09-28 → 2022-10-21]
 40%|████      | 43/107 [04:19<06:26,  6.04s/it, 2021-10-19 → 2022-11-04]
 41%|████      | 44/107 [04:25<06:20,  6.04s/it, 2021-11-02 → 2022-11-18]
 42%|████▏     | 45/107 [04:31<06:15,  6.05s/it, 2021-11-16 → 2022-12-02]
 43%|████▎     | 46/107 [04:37<06:08,  6.04s/it, 2021-11-30 → 2022-12-16]
 44%|████▍     | 47/107 [04:43<06:03,  6.06s/it, 2021-12-14 → 2022-12-30]
 45%|████▍     | 48/107 [04:50<05:57,  6.06s/it, 2021-12-28 → 2023-01-14]
 46%|████▌     | 49/107 [04:55<05:49,  6.02s/it, 2022-01-12 → 2023-02-04]
 47%|████▋     | 50/107 [05:01<05:41,  5.99s/it, 2022-01-26 → 2023-02-18]
 48%|████▊     | 51/107 [05:07<05:34,  5.98s/it, 2022-02-16 → 2023-03-04]
 49%|████▊     | 52/107 [05:13<05:30,  6.01s/it, 2022-03-02 → 2023-03-18]
 50%|████▉     | 53/107 [05:19<05:25,  6.02s/it, 2022-03-16 → 2023-04-01]
 50%|█████     | 54/107 [05:26<05:20,  6.06s/it, 2022-03-30 → 2023-04-18]
 51%|█████▏    | 55/107 [05:32<05:16,  6.09s/it, 2022-04-15 → 2023-05-05]
 52%|█████▏    | 56/107 [05:38<05:10,  6.09s/it, 2022-04-29 → 2023-05-19]
 53%|█████▎    | 57/107 [05:44<05:05,  6.10s/it, 2022-05-18 → 2023-06-02]
 54%|█████▍    | 58/107 [05:50<04:59,  6.11s/it, 2022-06-01 → 2023-06-16]
 55%|█████▌    | 59/107 [05:56<04:53,  6.11s/it, 2022-06-16 → 2023-07-04]
 56%|█████▌    | 60/107 [06:02<04:48,  6.14s/it, 2022-06-30 → 2023-07-18]
 57%|█████▋    | 61/107 [06:09<04:42,  6.15s/it, 2022-07-14 → 2023-08-01]
 58%|█████▊    | 62/107 [06:15<04:36,  6.14s/it, 2022-07-28 → 2023-08-15]
 59%|█████▉    | 63/107 [06:21<04:29,  6.12s/it, 2022-08-11 → 2023-08-29]
 60%|█████▉    | 64/107 [06:27<04:22,  6.10s/it, 2022-08-25 → 2023-09-12]
 61%|██████    | 65/107 [06:33<04:15,  6.09s/it, 2022-09-08 → 2023-09-26]
 62%|██████▏   | 66/107 [06:39<04:09,  6.08s/it, 2022-09-23 → 2023-10-18]
 63%|██████▎   | 67/107 [06:45<04:02,  6.07s/it, 2022-10-14 → 2023-11-01]
 64%|██████▎   | 68/107 [06:51<03:58,  6.11s/it, 2022-10-28 → 2023-11-15]
 64%|██████▍   | 69/107 [06:57<03:53,  6.15s/it, 2022-11-11 → 2023-11-29]
 65%|██████▌   | 70/107 [07:04<03:48,  6.18s/it, 2022-11-25 → 2023-12-13]
 66%|██████▋   | 71/107 [07:10<03:43,  6.21s/it, 2022-12-09 → 2023-12-27]
 67%|██████▋   | 72/107 [07:16<03:37,  6.23s/it, 2022-12-23 → 2024-01-11]
 68%|██████▊   | 73/107 [07:23<03:32,  6.24s/it, 2023-01-07 → 2024-01-25]
 69%|██████▉   | 74/107 [07:29<03:26,  6.26s/it, 2023-01-21 → 2024-02-08]
 70%|███████   | 75/107 [07:35<03:20,  6.27s/it, 2023-02-11 → 2024-03-01]
 71%|███████   | 76/107 [07:41<03:14,  6.26s/it, 2023-02-25 → 2024-03-15]
 72%|███████▏  | 77/107 [07:48<03:07,  6.25s/it, 2023-03-11 → 2024-03-29]
 73%|███████▎  | 78/107 [07:54<03:01,  6.26s/it, 2023-03-25 → 2024-04-16]
 74%|███████▍  | 79/107 [08:00<02:54,  6.25s/it, 2023-04-11 → 2024-04-30]
 75%|███████▍  | 80/107 [08:06<02:49,  6.27s/it, 2023-04-25 → 2024-05-17]
 76%|███████▌  | 81/107 [08:13<02:43,  6.28s/it, 2023-05-12 → 2024-05-31]
 77%|███████▋  | 82/107 [08:19<02:36,  6.25s/it, 2023-05-26 → 2024-06-15]
 78%|███████▊  | 83/107 [08:25<02:29,  6.23s/it, 2023-06-09 → 2024-06-29]
 79%|███████▊  | 84/107 [08:31<02:23,  6.23s/it, 2023-06-27 → 2024-07-13]
 79%|███████▉  | 85/107 [08:38<02:17,  6.23s/it, 2023-07-11 → 2024-07-27]
 80%|████████  | 86/107 [08:44<02:10,  6.23s/it, 2023-07-25 → 2024-08-10]
 81%|████████▏ | 87/107 [08:50<02:04,  6.24s/it, 2023-08-08 → 2024-08-24]
 82%|████████▏ | 88/107 [08:56<01:58,  6.26s/it, 2023-08-22 → 2024-09-07]
 83%|████████▎ | 89/107 [09:03<01:52,  6.26s/it, 2023-09-05 → 2024-09-25]
 84%|████████▍ | 90/107 [09:09<01:46,  6.25s/it, 2023-09-19 → 2024-10-16]
 85%|████████▌ | 91/107 [09:15<01:39,  6.24s/it, 2023-10-11 → 2024-10-30]
 86%|████████▌ | 92/107 [09:21<01:33,  6.24s/it, 2023-10-25 → 2024-11-13]
 87%|████████▋ | 93/107 [09:27<01:27,  6.23s/it, 2023-11-08 → 2024-11-27]
 88%|████████▊ | 94/107 [09:34<01:20,  6.23s/it, 2023-11-22 → 2024-12-11]
 89%|████████▉ | 95/107 [09:40<01:14,  6.24s/it, 2023-12-06 → 2024-12-25]
 90%|████████▉ | 96/107 [09:46<01:08,  6.24s/it, 2023-12-20 → 2025-01-09]
 91%|█████████ | 97/107 [09:52<01:02,  6.23s/it, 2024-01-04 → 2025-01-23]
 92%|█████████▏| 98/107 [09:59<00:56,  6.24s/it, 2024-01-18 → 2025-02-14]
 93%|█████████▎| 99/107 [10:05<00:49,  6.24s/it, 2024-02-01 → 2025-02-28]
 93%|█████████▎| 100/107 [10:11<00:43,  6.26s/it, 2024-02-23 → 2025-03-14]
 94%|█████████▍| 101/107 [10:17<00:37,  6.25s/it, 2024-03-08 → 2025-03-28]
 95%|█████████▌| 102/107 [10:24<00:31,  6.26s/it, 2024-03-22 → 2025-04-15]
 96%|█████████▋| 103/107 [10:30<00:25,  6.25s/it, 2024-04-09 → 2025-04-29]
 97%|█████████▋| 104/107 [10:36<00:18,  6.25s/it, 2024-04-23 → 2025-05-16]
 98%|█████████▊| 105/107 [10:42<00:12,  6.23s/it, 2024-05-10 → 2025-06-19]
 99%|█████████▉| 106/107 [10:49<00:06,  6.23s/it, 2024-05-24 → 2025-07-03]
100%|██████████| 107/107 [10:55<00:00,  6.22s/it, 2024-05-24 → 2025-07-03]
100%|██████████| 107/107 [10:55<00:00,  6.12s/it, 2024-05-24 → 2025-07-03]
2025-07-08 19:32:35 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:463 - [v8] 优化前的夏普率: 0.8379
2025-07-08 19:32:35 | INFO | metric_online:run_optimize_portfolio_new_with_sector_constraints:464 - [v8] 优化后的夏普率: 0.99368
2025-07-08 19:32:36 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:37 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:38 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:39 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:40 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:42 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:42 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:42 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:43 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:43 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:44 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:45 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:45 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:45 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:46 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:46 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:47 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:48 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:49 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:49 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:49 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:50 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:50 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:51 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:51 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
2025-07-08 19:32:51 | WARNING | func_backtester_hf:run_sig2pos:1020 - The given signal has NaN. Will use 0 to fill
[2025-07-08 19:32:53,512][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:53,513][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:53,521][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:53,522][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:53,529][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:53,530][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:55,505][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:55,506][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:55,514][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:55,515][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:55,522][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:55,523][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:57,351][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:57,352][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:57,360][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:57,361][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:57,367][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
[2025-07-08 19:32:57,368][matplotlib.category][INFO] - Using categorical units to plot a list of strings that are all parsable as floats or dates. If these strings should be plotted as numbers, cast to the appropriate data type before plotting.
2025-07-08 19:33:01 | INFO | metric_online:run_with_hydra:919 - {'action': 'parallel_done', 'success_count': 1, 'fail_count': 0}
2025-07-08 19:33:01 | INFO | metric_online:run_with_hydra:924 - {'action': 'success', 'description': 'metric_online 完成'}